

Review of Mixed-Integer Nonlinear Programming and Generalized Disjunctive Programs

Ignacio Grossmann Center for Advanced Process Decision-making Department of Chemical Engineering Carnegie Mellon University Pittsburgh, PA 15213, U.S.A

> Zhejiang University Hangzhou January 17, 2014

Outline

- 1. Review of MINLP methods
- 2. Overview GDP and relaxations for nonlinear problems (big-M and hull relaxation)
- **3. Convex nonlinear GDP: hierarchy of relaxations** *Concept of basic steps Equivalent NLP formulation*
- **4.** Application to global Optimization of nonconvex GDP *Bilinear, concave and linear fractional functions*
- 5. Algorithm reformulating GDP to MI(N)LP using basic steps Convex linear/nonlinear GDP

Mixed-Integer Nonlinear Programming

 $\begin{array}{ll} \min Z = f\left(x,y\right) & \textit{Objective Function} \\ s.t. \quad g(x,y) \leq 0 & \textit{Inequality Constraints} \\ x \in X, \ y \in Y \\ X = \{x \mid x \in \mathbb{R}^n, x^{\perp} \leq x \leq x^{\vee}, Bx \leq b\} \\ Y = \{y \mid y \in \{0,1\}^m, Ay \leq a\} \end{array}$

f(x,y) and g(x,y) - assumed to be convex and bounded over X.
f(x,y) and g(x,y) commonly linear in y

Branch and Bound method (BB)
 Ravindran and Gupta (1985) Leyffer and Fletcher (2001)
 Branch and cut: Stubbs and Mehrotra (1999)

Generalized Benders Decomposition (GBD)

Geoffrion (1972)

•Outer-Approximation (OA)

Duran & Grossmann (1986), Yuan et al. (1988), Fletcher & Leyffer (1994)

LP/NLP based Branch and Bound

Quesada and Grossmann (1992)

Extended Cutting Plane (ECP) Westerlund and Pettersson (1995)

Basic NLP subproblems

a) NLP Relaxation Lower bound $\min Z_{LB}^{k} = f(x, y)$ s.t. $g_{j}(x, y) \leq 0$ $j \in J$ $x \in X, y \in Y_{R}$ (NLP1) $y_{i} \leq \alpha_{i}^{k} \ i \in I_{FL}^{k}$ $y_{i} \geq \beta_{i}^{k} \ i \in I_{FU}^{k}$

b) NLP Fixed
$$y^k Upper bound$$

 $\min Z_U^k = f(x, y^k)$
s.t. $g_j(x, y^k) \le 0$ $j \in J$ (NLP2)
 $x \in X$

c) Feasibility subproblem for fixed y^k .

min*u*

s.t.
$$g_j(x, y^k) \le u \quad j \in J$$

 $x \in X, \ u \in R^1$ (NLPF)

Carnegie Mellon

Infinity-norm

<u>C</u>API

Cutting plane MILP master (Duran and Grossmann, 1986)

Based on solution of K subproblems $(x^k, y^k) k=1,...K$

Lower Bound

M-MIP

 $\min Z_L^K = \alpha$ $st \ \alpha \ge f(x^k, y^k) + \nabla f(x^k, y^k)^T \begin{bmatrix} x - x^k \\ y - y^k \end{bmatrix}$ $g_j(x^k, y^k) + \nabla g_j(x^k, y^k)^T \begin{bmatrix} x - x^k \\ y - y^k \end{bmatrix} \le 0 \quad j \in J$ $x \in X, y \in Y$

Notes:

a) Point $(x^k, y^k) k=1,...K$ normally from NLP2

b) Linearizations *accumulated* as iterations K increase

c) Non-decreasing sequence lower bounds

Linearizations and Cutting Planes

Carnegie Mellon

Overestimate Feasible Region

Branch and Bound

NLP1:min $Z_{LB}^k = f(x, y)$ Tree Enumerations.t. $g_j(x, y) \le 0$ $j \in J$ $x \in X, y \in Y_R$ $y_i \le \alpha_i^k \quad i \in I_{FL}^k$ $y_i \ge \beta_i^k \quad i \in I_{FU}^k$

Successive solution of NLP1 subproblems

Advantage: Tight formulation may require one NLP1 ($I_{FL}=I_{FU}=\emptyset$)

Disadvantage: Potentially many NLP subproblems

Convergence global optimum: Uniqueness solution NLP1 (*sufficient condition*)

Carnegie Mellon Less stringent than other methods

Outer-Approximation

Alternate solution of NLP and MIP problems:

 $x \in X, y \in Y$

Property. Trivially converges in <u>one iteration</u> if f(x,y) and g(x,y) are <u>linear</u>

- If infeasible NLP solution of feasibility NLP-F required to guarantee convergence.

Generalized Benders Decomposition

Benders (1962), Geoffrion (1972)

Particular case of Outer-Approximation as applied to (P1)

1. Consider Outer-Approximation at (x^k, y^k)

$$\alpha \ge f(x^{k}, y^{k}) + \nabla f(x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix}$$

$$g(x^{k}, y^{k}) + \nabla g_{j}(x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix} \le 0 \quad j \in J^{k}$$
(1)

2. Obtain linear combination of (1) using Karush-Kuhn-Tucker multipliers μ^k and eliminating x variables

$$\alpha \ge f\left(x^{k}, y^{k}\right) + \nabla_{y} f\left(x^{k}, y^{k}\right)^{T} \left(y - y^{k}\right)$$

$$+ \left(\mu^{k}\right)^{T} \left[g\left(x^{k}, y^{k}\right) + \nabla_{y} g\left(x^{k}, y^{k}\right)^{T} \left(y - y^{k}\right)\right]$$

$$(2)$$

Lagrangian cut

Remark. Cut for infeasible subproblems can be derived in

a similar way. $(\lambda^k)^T \left[g\left(x^k, y^k\right) + \nabla_y g\left(x^k, y^k\right)^T \left(y - y^k\right) \right] \leq 0$

Generalized Benders Decomposition

Alternate solution of NLP and MIP problems:

NLP2:

$$\min Z_U^k = f(x, y^k)$$
s.t. $g_j(x, y^k) \le 0$ $j \in J$
 $x \in X$

$$\begin{array}{l} \min \ Z_L^K = \alpha \\ \mathbf{M}\text{-}\mathbf{GBD:} \ st \ \alpha \ge \ f(x^k, y^k) + \nabla_y f(x^k, y^k)^T \left(y - y^k\right) \\ + \left(\mu^k\right)^T \left[g(x^k, y^k) + \nabla_y g(x^k, y^k)^T \left(y - y^k\right) \right] \quad k \in KFS \\ \left(\lambda^k\right)^T \left[g(x^k, y^k) + \nabla_y g(x^k, y^k)^T \left(y - y^k\right) \right] \le 0 \quad k \in KIS \\ y \in Y, \ \alpha \in R^1 \end{array}$$

Property 1. If problem (P1) has zero integrality gap,
Generalized Benders Decomposition converges in one Sahinidis, Grossmann (1991)
iteration when optimal
$$(x^k, y^k)$$
 are found.

=> Also applies to Outer-Approximation

Extended Cutting Plane

Westerlund and Pettersson (1995)

Add linearization most violated constraint to M-MIP

$$J^{k} = \{ \hat{j} \in \arg\{ \max_{j \in J} g_{j}(x^{k}, y^{k}) \}$$

Remarks.

- Can also add full set of linearizations for M-MIP
- Successive M-MIP's produce non-decreasing sequence lower bounds
- Simultaneously optimize x^k , y^k with M-MIP
 - = > Convergence may be slow

LP/NLP Based Branch and Bound (Branch & Cut)

Quesada and Grossmann (1992)

Integrate NLP and M-MIP problems

Remark.

Fewer number branch and bound nodes for LP subproblems May increase number of NLP subproblems

Numerical Example

$$\begin{array}{ll} \min Z = y_1 + 1.5y_2 + 0.5y_3 + x_1 ^2 &+ x_2 ^2 \\ \text{s.t.} & (x_1 - 2) \ ^2 - x_2 \leq 0 \\ & x_1 - 2y_1 \geq 0 \\ & x_1 - x_2 - 4(1 - y_2) \leq 0 \\ & x_1 - (1 - y_1) \geq 0 \\ & x_2 - y_2 \geq 0 \\ & x_1 + x_2 \geq 3y_3 \\ & y_1 + y_2 + y_3 \geq 1 \\ & 0 \leq x_1 \leq 4, \ 0 \leq x_2 \leq 4 \\ & y_1, y_2, y_3 = 0, 1 \end{array} \tag{MIP-EX}$$

Optimum solution: $y_1=0$, $y_2=1$, $y_3=0$, $x_1=1$, $x_2=1$, Z=3.5.

Starting point $y_1 = y_2 = y_3 = 1$.

Objective function

Summary of Computational Results

Subproblems	Master problems (LP's solved)		
5 (NLP1)			
3 (NLP2)	3 (M-MIP) (19 LP's)		
4 (NLP2)	4 (M-GBD) (10 LP's)		
-	5 (M-MIP) (18 LP's)		
	Subproblems 5 (NLP1) 3 (NLP2) 4 (NLP2) -		

Carnegie Mellon

nical EERING

Example: Process Network with Fixed Charges

- Duran and Grossmann (1986)
 - Network superstructure

Example (Duran and Grossma	ann, 1986)			
Algebraic MINLP: <i>lin</i>	near in y, c	convex in x		
8 0-1 variables, 25 continue	ous, 31 constraints (5 nonlinear)			
	NLP	MIP		
Branch and Bound (F-L)	20	-		
Outer-Approximation:	3	3		
Generalized-Benders	10	10		
Extended Cutting Plane	-	15		
LP/NLP based	3	7 LP's vs 13 LP's OA		

Effects of Nonconvexities

- 1. NLP supbroblems may have local optima
- 2. MILP master may cut-off global optimum

Handling of Nonconvexities

- 1. Rigorous approach (global optimization): Replace nonconvex terms by underestimtors/convex envelopes Solve convex MINLP within spatial branch and bound
- 2. Heuristic approach:

Add slacks to linearizations Search until no imprvement in NLP

Handling nonlinear equations h(x,y) = 0

- 1. In branch and bound no special provision-simply add to NLPs
- 2. In GBD no special provision- cancels in Lagrangian cut
- **3.** In OA equality relaxation

$$T^{k} \nabla h(x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix} \leq 0$$
$$T^{k} = \begin{bmatrix} t_{ii}^{k} \end{bmatrix}, \quad t_{ii}^{k} = \begin{cases} 1 & \text{if } \lambda_{i}^{k} > 0 \\ -1 & \text{if } \lambda_{i}^{k} < 0 \\ 0 & \text{if } \lambda_{i}^{k} = 0 \end{cases}$$

Lower bounds may not be validRigorous if eqtn relaxes as $h(x,y) \le 0$ Carnegie Mellon

MIP-Master Augmented Penalty

Viswanathan and Grossmann, 1990

CPD

Slacks: p^k , q^k with weights w^k

$$\min \ Z^{K} = \alpha + \sum_{k=1}^{K} \left[w_{p}^{k} p^{k} + w_{q}^{k} q^{k} \right]$$
(M-APER)
s.t. $\alpha \ge f(x^{k}, y^{k}) + \nabla f(x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix}$
 $T^{k} \nabla h(x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix} \le p^{k}$
 $g(x^{k}, y^{k}) + \nabla g(x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix} \le q^{k}$
 $\sum_{i \in B^{k}} y_{i} - \sum_{i \in N^{k}} y_{i} \le |B^{k}| - 1 \quad k = 1, ...K$
 $x \in X, y \in Y, \alpha \in \mathbf{R}^{1}, p^{k}, q^{k} \ge 0$

If convex MINLP then slacks take value of zero => reduces to OA/ER

Basis DICOPT (nonconvex version)

1. Solve relaxed MINLP

2. Iterate between MIP-APER and NLP subproblem until no improvement in NLP

Mixed-integer Nonlinear Programming MINLP:

Algorithms

Branch and Bound (BB) Leyffer (2001), Bussieck, Drud (2003) Generalized Benders Decomposition (GBD) Geoffrion (1972) Outer-Approximation (OA) Duran and Grossmann (1986) Extended Cutting Plane(ECP) Westerlund and Pettersson (1992)

Codes:

SBB GAMS simple B&B MINLP-BB (AMPL)Fletcher and Leyffer (1999)

Bonmin (COIN-OR) *Bonami et al* (2006) FilMINT Linderoth and Leyffer (2006)

DICOPT (GAMS) Viswanathan and Grossman (1990) AOA (AIMSS)

α-ECP Westerlund and Peterssson (1996) MINOPT Schweiger and Floudas (1998)

BARON Sahinidis et al. (1998) Global Couenne Belotti & Margot (2008) Global SCIP ZIB (2012) Global GLOMIQO Floudas and Meisner (2011)

Carnegie Mellon

Note: MIQPs can be solved with CPLEX

Login

Ā	IBM	Carne	gieMellon							
)					Username Password	
	Home	Goals	Participants	Instructions	Contribute Problems	Open Problems	Libraries of Problems	Forum	Resources)—

CMU-IBM Cyber-Infrastructure for MINLP collaborative site

This collaborative site has as a major goal to promote the optimization of linear and nonlinear models with one or several alternative model formulations involving discrete and continuous variables through mixed-integer nonlinear programming (MINLP), or generalized disjunctive programming (GDP). Three major objectives are:

- Create a library of optimization problems that can be generally formulated as MINLP/GDP models.
- Provide high level descriptions of the problems with one or several model formulations with corresponding input files for one or several instances.
- Allow users to pose open problems that are unsolved and with unknown or tentative formulations

 $\min Z = f(x, y)$ s.t. $g(x, y) \leq 0$ $x \in X, y \in Y$

We invite researchers and practitioners to contribute to the library of problems and models, and to participate in the discussions on these problems. We look forward to collaborating with you!

About us	Contribute	Our library	Resources
Goals of our project	Create an account	View our library of problems	Conferences
Participants of the project	Learn how to contribute problems	Discuss problems in the forums	Lectures and Tutorials
	Contribute solved problems, models, and instanes to our library		
	Post open unsolved problems		

Generalized Disjunctive Programming (GDP)

- Raman and Grossmann (1994) (Extension Balas, 1979)
- *Motivation: Facilitate modeling discrete/continuous problems*

$$\min Z = \sum_{k} c_{k} + f(x) \qquad \text{Objective Function}$$

$$s.t. \quad r(x) \leq 0 \qquad \text{Common Constraints}$$

$$\bigcap_{j \in J_{k}} \begin{bmatrix} Y_{jk} \\ g_{jk}(x) \leq 0 \\ c_{k} = \gamma_{jk} \end{bmatrix} \quad k \in K \qquad \text{Constraints}$$

$$\widehat{\Omega(Y)} = true \qquad \text{Logic Propositions}$$

$$x \in R^{n}, c_{k} \in R^{1} \qquad \text{Continuous Variables}$$

$$Y_{jk} \in \{true, false\} \qquad \text{Boolean Variables}$$

Properties: a) Every GDP can be transformed into an MINLPb) Every bounded MINLP can be transformed into GDP

Process Network with fixed charges

 $Min \ Z = c_1 + c_2 + c_3 + d^T x$

s.t.

$$x_{1} = x_{2} + x_{4}$$

$$x_{6} = x_{3} + x_{5}$$

$$\begin{bmatrix} Y_{11} \\ x_{3} = p_{1}x_{2} \\ c_{1} = \gamma_{1} \end{bmatrix} \lor \begin{bmatrix} Y_{21} \\ x_{3} = x_{2} = 0 \\ c_{1} = 0 \end{bmatrix}$$

$$\begin{bmatrix} Y_{12} \\ x_{5} = p_{2}x_{4} \\ c_{2} = \gamma_{2} \end{bmatrix} \lor \begin{bmatrix} Y_{22} \\ x_{5} = x_{4} = 0 \\ c_{2} = 0 \end{bmatrix}$$

$$\begin{bmatrix} Y_{13} \\ x_{7} = p_{3}x_{6} \\ c_{3} = \gamma_{3} \end{bmatrix} \lor \begin{bmatrix} Y_{23} \\ x_{7} = x_{6} = 0 \\ c_{3} = 0 \end{bmatrix}$$

$$\begin{array}{l} Y_{11} & \searrow & Y_{21} \\ Y_{12} & \swarrow & Y_{22} \\ Y_{13} & \swarrow & Y_{23} \\ Y_{11} & \lor & Y_{12} \Longrightarrow & Y_{13} \\ Y_{13} & \Longrightarrow & Y_{11} \lor & Y_{12} \\ Y_{21} & \lor & Y_{22} \\ 0 & \leq x & \leq x^{U} \\ Y_{11}, Y_{21}, Y_{12}, Y_{22}, Y_{13}, Y_{23} \in \{True, False\} \\ c_{1}, c_{2}, c_{3} \in \mathbf{R}^{1} \end{array}$$

Carnegie Mellon

<u>nical</u>

Generalized Disjunctive Programming (GDP)

• Raman and Grossmann (1994)

 $\min \ Z = \sum_{k} c_k + f(x)$ s.t. $r(x) \leq 0$ $\bigvee_{\substack{j \in J_k \\ c_k = \gamma_{jk}}} \begin{vmatrix} Y_{jk} \\ g_{jk}(x) \le 0 \\ c_k = \gamma_{jk} \end{vmatrix} \quad k \in K$ $\Omega(Y) = true$ $x \in \mathbb{R}^n, \mathbb{C}_k \in \mathbb{R}^1$ $Y_{ik} \in \{ true, false \}$

Objective Function

Common Constraints

Disjunction

Constraints

Fixed Charges

Logic Propositions

Continuous Variables

Boolean Variables

Relaxation of GDP? Lee, Grossmann (2000)

MINLP reformulation of GDP

$$\min Z = \sum_{k \in K} \sum_{j \in J_k} \gamma_{jk} \lambda_{jk} + f(x)$$

s.t. $r(x) \le 0$
 $g_{jk}(x) \le M_{jk}(1 - \lambda_{jk}) , j \in J_k, k \in K$
 $\sum_{j \in J_k} \lambda_{jk} = 1, k \in K$
 $A\lambda \le a$
 $x \ge 0, \lambda_{jk} \in \{0, 1\}$
Big-M Parameter
Big-M Parameter
 $Logic constraints$
Williams (1990)

NLP Relaxation $0 \le \lambda_{jk} \le 1 \implies$ Lower bound to optimum of GDP

Big-M MINLP (BM)

Hull Relaxation Formulation

Consider Disjunction $k \in K$

$$\bigvee_{j \in J_{k}} \begin{bmatrix} Y_{jk} \\ g_{jk}(x) \leq 0 \\ c = \gamma_{jk} \end{bmatrix}$$

- **<u>Theorem</u>**: Convex Hull of Disjunction k (Lee, Grossmann, 2000)
 - Disaggregated variables v^{jk}

$$\{(x,c) \mid x = \sum_{j \in J^{k}} v^{j^{k}}, \quad c = \sum_{j \in J} \lambda_{j^{k}} \gamma_{j^{k}}, \\ 0 \le v^{j^{k}} \le \lambda_{j^{k}} U^{k}_{j^{k}}, j \in J^{k} \qquad => \text{Convex Constraints} \\ \sum_{j \in J^{k}} \lambda_{j^{k}} = 1, \quad 0 \le \lambda_{j^{k}} \le 1, \\ \lambda_{j^{k}} g_{j^{k}} (v^{j^{k}} / \lambda_{j^{k}}) \le 0, j \in J^{k} \}$$

 λ_i - weights for linear combination

- **Stubbs and Mehrotra (1999)** -
- **Generalization of Balas (1979)**

Hull relaxation: intersection of convex hull of each disjunction

Remarks

1. Perspective function $h(v, \lambda) = \lambda g(v / \lambda)$ If g(x) is a bounded convex function, $h(v, \lambda)$ is a bounded convex function h(v, 0) = 0 for bounded g(x)

Hiriart-Urruty and Lemaréchal (1993)

2. Replace
$$\lambda_{jk} g_{jk} (v_{jk} / \lambda_{jk}) \le 0$$
 where $0 \le v_{jk} \le U \lambda_{jk}$ by:
 $((1-\varepsilon)\lambda_{jk} + \varepsilon)(g_{jk} (v_{jk} / ((1-\varepsilon)\lambda_{jk} + \varepsilon))) - \varepsilon g_{jk} (0)(1-\lambda_{jk}) \le 0$

Furman, Sawaya & Grossmann (2009)

- a. Exact approximation of the original constraints as $\varepsilon \to 0$.
- b. The <u>constraints are exact at $\lambda_{jk} = 0$ and at $\lambda_{jk} = 1$ </u> regardless of value of ε . *if* $\lambda_{jk} = 0$, $\Rightarrow (\varepsilon)(g_{jk}(0)) - \varepsilon g_{jk}(0) = 0 \le 0$ *if* $\lambda_{jk} = 1$, $\Rightarrow ((1)(g_{jk}(v_{jk} / (1)) - \varepsilon g_{jk}(0)(0) = (1)g_{jk}(v_{jk} / (1)) \le 0$

c. The LHS of the new constraint is **convex**.

For linear disjunctions

$$\bigvee_{j\in J_k} \left[A_{jk} x \leq b_{jk} \right]$$

(

Convex-hull set
$$g_{jk}(x) = A_{jk}x - b_{jk}$$

$$\begin{aligned} x &= \sum_{j \in J_{k}} v_{jk} \\ A_{jk} v_{jk} \leq b_{jk} \lambda_{jk} \quad j \in J_{k} \\ \sum_{j \in J_{k}} \lambda_{jk} = 1 \\ 0 \leq \lambda_{jk} \leq 1 \quad j \in J_{k} \end{aligned}$$
Balas (1985)

Hull Relaxation Problem (HRP)

HRP:

$$\min Z = \sum_{k \in K} \sum_{j \in J_{k}} \gamma_{jk} \lambda_{jk} + f(x)$$
s.t. $r(x) \le 0$

$$x = \sum_{j \in J_{k}} v^{jk}, k \in K$$
 $0 \le v^{jk} \le \lambda_{jk} U_{jk}, j \in J_{k}, k \in K$

$$\sum_{j \in J_{k}} \lambda_{jk} = 1, k \in K$$

$$\lambda_{jk} g_{jk} (v^{jk} / \lambda_{jk}) \le 0, \quad j \in J_{k}, k \in K$$

$$A\lambda \le a$$

$$A\lambda \le a$$

$$x, v^{jk} \ge 0, \quad 0 \le \lambda_{jk} \le 1, \quad j \in J_{k}, k \in K$$

• **<u>Property</u>**: The NLP (HRP) yields a lower bound to optimum of (GDP).

Strength Lower Bounds

• <u>Theorem</u>: The relaxation of (HRP) yields a <u>lower bound that is greater than or</u> <u>equal to the lower bound</u> that is obtained from the relaxation of problem (BM Grossmann, Lee (2003)

Convex Hull of a set of disjunctions is smallest convex set that includes set of disjunctions. Projected relaxation of (CH) onto the space of (BM) is as tight or tighter than that of (BM)

Process Network with Fixed Charges

- Türkay and Grossmann (1997)
- 8 Boolean variables, 25 continuous, 31 constraints (8 disjunctions, 5 nonlinear)

Optimal solution

Minimum Cost: \$ 68.01M/year

• <u>5 nodes vs. 17 nodes of Big-M (lower bound = 15.08)</u>

Can we obtain stronger relaxations than with Hull-Relaxation?

Extend Disjunctive Programming Theory to Nonlinear Convex Sets DP: Linear programming with disjunctions Balas (1974, 1979, 1985, 1988)

Equivalence between GDP and DP

Sawaya, Grossmann (2012)

The integrality of λ is guaranteed

Proposition:

Discrete/continuous GDP and continuous DP have equivalent solutions.

Regular Form: Form represented by the intersection of the union of convex sets

$$F = \bigcap_{k \in K} S_k, k \in K, S_k = \bigcup_{i \in D_k} P_i$$

$$P_i \text{ a convex set for } i \in D_k$$

$$F \text{ is in regular form}$$

Theorem 2.1. Let F be a disjunctive set in regular form. Then F can be brought to DNF by |K| - 1 recursive applications of the following basic step which preserves regularity: For some $r, s \in K$, bring $S_r \cap S_s$ to DNF by replacing it with: $S_{rs} = \bigcup_{i \in D_r, i \in D_s} (P_i \cap P_j)$ Balas (1985)

Illustrative Example: Basic Steps

$$S_1 = (P_{11} \cup P_{21})$$
 $S_2 = (P_{12} \cup P_{22})$ $S_3 = (P_{13} \cup P_{23})$

Then F can be brought to DNF through <u>2 basic steps</u>.

Apply Basic Step to:

 $F = S_1 \cap S_2 \cap S_3$

$$S_{1} \cap S_{2} = (P_{11} \cup P_{21}) \cap (P_{12} \cup P_{22})$$
$$S_{12} = (P_{11} \cap P_{12}) \cup (P_{11} \cap P_{22}) \cup (P_{21} \cap P_{12}) \cup (P_{21} \cap P_{22})$$

We can then rewrite

 $F = S_1 \cap S_2 \cap S_3 \quad \text{as } F = S_{12} \cap S_3$

Apply Basic Step to:

$$S_{12} \cap S_3 = ((P_{11} \cap P_{12}) \cup (P_{11} \cap P_{22}) \cup (P_{21} \cap P_{12}) \cup (P_{21} \cap P_{22})) \cap (P_{13} \cup P_{23})$$

$$S_{123} = \begin{pmatrix} (P_{11} \cap P_{12} \cap P_{13}) \cup (P_{11} \cap P_{22} \cap P_{13}) \cup (P_{21} \cap P_{12} \cap P_{13}) \cup (P_{21} \cap P_{22} \cap P_{13}) \\ \cup (P_{11} \cap P_{12} \cap P_{23}) \cup (P_{11} \cap P_{22} \cap P_{23}) \cup (P_{21} \cap P_{12} \cap P_{23}) \cup (P_{21} \cap P_{22} \cap P_{23}) \end{pmatrix}$$

We can then rewrite

$$F = S_{12} \cap S_3$$
 as $F = S_{123}$ which is its equivalent DNF

Theorem 2.4. For i = 1, 2, ..., k let $F_i = \bigcap_{k \in K} S_k$ be a sequence of regular forms of a disjunctive set such that F_i is obtained from F_{i-1} by the application of a basic step, then:

h-rel $(F_i) \subseteq h$ -rel (F_{i-1})

Illustration: $F_0 = (P_{11} \cup P_{12}) \cap (P_{21} \cup P_{22})$

Theorem 2.4. For i = 1, 2, ..., k let $F_i = \bigcap_{k \in K} S_k$ be a sequence of regular forms of a disjunctive set such that F_i is obtained from F_{i-1} by the application of a basic step, then:

h-rel $(F_i) \subseteq h$ -rel (F_{i-1})

Theorem 2.4. For i = 1, 2, ..., k let $F_i = \bigcap_{k \in K} S_k$ be a sequence of regular forms of a disjunctive set such that F_i is obtained from F_{i-1} by the application of a basic step, then:

h-rel $(F_i) \subseteq h$ -rel (F_{i-1})

No Basic Step Applied => HR Carnegie Mellon

Theorem 2.4. For i = 1, 2, ..., k let $F_i = \bigcap_{k \in K} S_k$ be a sequence of regular forms of a disjunctive set such that F_i is obtained from F_{i-1} by the application of a basic step, then:

h-rel $(F_i) \subseteq h$ -rel (F_{i-1})

Theorem 2.4. For i = 1, 2, ..., k let $F_i = \bigcap_{k \in K} S_k$ be a sequence of regular forms of a disjunctive set such that F_i is obtained from F_{i-1} by the application of a basic step, then:

h-rel $(F_i) \subseteq h$ -rel (F_{i-1})

Convex nonlinear program equivalent to a convex disjunctive program

Theorem 2.8. Let $Z = \min\{f(x)|x \in S\}$ be a convex disjunctive program where S is a convex disjunctive set in DNF such that $S = \bigcup_{i \in D} P_i$ and $P_i = \{x \in \mathbb{R}^n, g_i(x) \leq 0\}$ where $P_i \neq \emptyset$ and that x and f(x) are bounded below and above by a large number L. Then, the following nonlinear program has at least one solution that is also solution of the disjunctive program:

The solution of the NLP relaxation leads to the solution of the DP!

Similar to convexification of MILPs

Lovacz & Schrijver (1989), Sherali & Adams (1990), Balas, Ceria, Cornuejols (1993) For DP/MINLP: Soares, Ceria (1999); Implicit in Stubbs and Mehrotra (1999)

Illustrative Example

Disjunctive Program

$$\min_{\substack{s.t.\\ s.t.\\ [x_1^2 + x_2^2 \le 1]}} Z = (x_1 - 3)^2 + (x_2 - 2)^2 + 1 \\ [x_1^2 + x_2^2 \le 1] \lor [(x_1 - 4)^2 + (x_2 - 1)^2 \le 1] \\ \lor [(x_1 - 2)^2 + (x_2 - 4)^2 \le 1] \\ |x_i| \le 5 \quad i \in 1, 2$$

Solution of the relaxed program is different from solution of the disjunctive program

Disjunctive Program

Place objective as constraint and intersect with disjunction

Solution of the hull relaxation of DNF (NLP) is the <u>same</u> as the <u>solution of the disjunctive program</u> (Theorem 2.8)

Summary of "practical" rules to apply basic steps

- Apply basic steps **between** those **disjunctions** with at least one **variable in common**.
- The more variables in common two disjunctions have the more the tightening expected.
- A basic step between a half space and a disjunction with two disjuncts one of which is a point contained in the facet of the half space will not tighten the relaxation.
- A smaller increase in the size of the formulation is expected when basic steps are applied between improper disjunctions and proper disjunctions.

Carnegie Mellon

nical

MINLP formulation of convex disjunctive program after several basic steps

No additional 0-1 variables are required!

Process Network Revisited

Illustrative Example

We can obtain a tighter relaxation by applying basic steps between the improper disjunctions and the proper disjunctions

Optimal Solution $Z^{rel} = 68.0097$ obtained from Hull Relaxation with basic steps

Solves as an NLP!

Sizes of Convex GDP Formulations

	BM Approach			HR Approach			Proposed Approach		
Example	Bin	Con	Const	Bin	Con	Const	Bin	Con	Const
Circles2D3	3	8	12	3	16	20	3	20	27
Circles2D36	36	39	38	36	111	112	36	147	184
Circles3D36	36	40	38	36	148	149	36	184	221
Proc8	8	42	97	8	98	152	8	444	843
Proc10	10	51	98	10	124	158	10	638	1181
Proc12	12	57	114	12	137	184	12	805	1462
Flay02	4	15	12	4	47	52	4	55	80
Flay03	12	27	25	12	123	145	12	195	334
Flay04	24	43	43	24	235	283	24	511	865
Clay0203	18	31	55	15	88	130	15	160	316
Clay0303	21	34	67	21	100	424	21	268	571
Clay0204	32	53	91	32	165	235	32	641	1503

Numerical Results

All problems were solved using NLP branch-and-bound SBB/CONOPT 3.14 (GAMS)

Table: Performance using different reformulation strategies

		BM Approach			HR Approach			Proposed Approach		
Example	Opt.	LB	Nds	T(s)	LB	Nds	T(s)	LB	Nds	T(s)
Circles2D3	1.17	0.00	4	1.0	1.15	4	1.04	1.17	0	0.7
Circles2D36	2.25	0.00	70	7.8	0.00	70	15.40	2.24	29	4.9
Circles3D36	15.77	0.44	70	7.3	12.04	70	18.50	15.72	34	10.8
Proc8	68.01	-829.0	34	4.6	67.12	2	1.0	68.01	0	1.7
Proc10	-73.51	-1,108.88	197	21.7	-78.81	4	1.0	-73.56	2	1.9
Proc12	-69.51	-1,108.88	234	27.7	-74.81	8	1.0	-69.51	2	2.9
Flay02	37.95	28.28	6	1.0	28.28	6	1.7	37.95	3	1.0
Flay03	48.99	30.98	104	10.7	30.98	108	12.1	41.94	30	9.0
Flay04	54.40	30.98	2,415	234.0	30.98	2,887	288.0	41.69	52	48.0
Clay0203	41,573.30	0.00	323	32.7	0.00	216	22.0	3,010.00	206	28.7
Clay0303	$26,\!670.00$	0.00	380	42.0	0.00	879	99.0	3,103.00	331	69.0
Clay0204	6,545.00	0.00	2,265	229.0	0.00	2,835	507.0	4,760.00	546	157.0

Poor lower bounds

Numerical Results

All problems were solved using NLP branch-and-bound SBB/CONOPT 3.14 (GAMS)

Table: Performance using different reformulation strategies

		BM Approach			HR Approach			Proposed Approach		
Example	Opt.	LB	Nds	T(s)	LB	Nds	T(s)	LB	Nds	T(s)
Circles2D3	1.17	0.00	4	1.0	1.15	4	1.04	1.17	0	0.7
Circles2D36	2.25	0.00	70	7.8	0.00	70	15.40	2.24	29	4.9
Circles3D36	15.77	0.44	70	7.3	12.04	70	18.50	15.72	34	10.8
Proc8	68.01	-829.0	34	4.6	67.12	2	1.0	68.01	0	1.7
Proc10	-73.51	-1,108.88	197	21.7	-78.81	4	1.0	-73.56	2	1.9
Proc12	-69.51	-1,108.88	234	27.7	-74.81	8	1.0	-69.51	2	2.9
Flay02	37.95	28.28	6	1.0	28.28	6	1.7	37.95	3	1.0
Flay03	48.99	30.98	104	10.7	30.98	108	12.1	41.94	30	9.0
Flay04	54.40	30.98	2,415	234.0	30.98	2,887	288.0	41.69	52	48.0
Clay0203	41,573.30	0.00	323	32.7	0.00	216	22.0	3,010.00	206	28.7
Clay0303	$26,\!670.00$	0.00	380	42.0	0.00	879	99.0	3,103.00	331	69.0
Clay0204	6,545.00	0.00	2,265	229.0	0.00	2,835	507.0	4,760.00	546	157.0

Improved lower bounds 50%probs

Numerical Results

All problems were solved using NLP branch-and-bound SBB/CONOPT 3.14 (GAMS)

Table: Performance using different reformulation strategies

		BM Approach			HR Approach			Proposed Approach		
Example	Opt.	LB	Nds	T(s)	LB	Nds	T(s)	LB	Nds	T(s)
Circles2D3	1.17	0.00	4	1.0	1.15	4	1.04	1.17	0	0.7
Circles2D36	2.25	0.00	70	7.8	0.00	70	15.40	2.24	29	4.9
Circles3D36	15.77	0.44	70	7.3	12.04	70	18.50	15.72	34	10.8
Proc8	68.01	-829.0	34	4.6	67.12	2	1.0	68.01	0	1.7
Proc10	-73.51	-1,108.88	197	21.7	-78.81	4	1.0	-73.56	2	1.9
Proc12	-69.51	-1,108.88	234	27.7	-74.81	8	1.0	-69.51	2	2.9
Flay02	37.95	28.28	6	1.0	28.28	6	1.7	37.95	3	1.0
Flay03	48.99	30.98	104	10.7	30.98	108	12.1	41.94	30	9.0
Flay04	54.40	30.98	2,415	234.0	30.98	2,887	288.0	41.69	52	48.0
Clay0203	41,573.30	0.00	323	32.7	0.00	216	22.0	3,010.00	206	28.7
Clay0303	$26,\!670.00$	0.00	380	42.0	0.00	879	99.0	3,103.00	331	69.0
Clay0204	6,545.00	0.00	2,265	229.0	0.00	2,835	507.0	4,760.00	546	157.0

Improved lower bounds 100%probs

Proposed vs BM: faster 10 out of 12 Proposed vs HR: faster 8 out of 12

Cutting Planes for Linear Generalized Disjunctive Programming

Reformulations as MILP

	$Min \ Z = \sum_{k \in K} \sum_{j \in J_k} \gamma_{jk} \lambda_{jk} + h^T x$	1 parameters	
Rig.M	s.t. $Bx \leq b$		
DIG -111	$A_{jk} x - a_{jk} \le M_{jk} (1 - \lambda_{jk}) \qquad j \in \mathcal{J}$	$\in J_k, k \in K$ (BM))
	$\sum_{j\in J_k} \lambda_{jk} \;\; = \; 1$	$k \in K$	
	$D\lambda \leq d$		
	$x \in \mathbb{R}^n, \lambda_{jk} \in \{0,1\} \qquad j \in \mathbb{C}$	$\in J_k$, $k \in K$	
	$Min \ Z = \sum_{k \in K} \sum_{j \in J_k} \gamma_{jk} \lambda_{jk} + h^T x$	Disaggregated variables	
Convex Hull	s.t. $Bx \leq b$ $A_{jk} v^{jk} - a_{jk} \lambda_{jk} \leq 0$	$j \in J_k, k \in K$	(T T)
	$x = \sum_{j \in J_k} \nu^{jk}$	$k \in K$	п)
	$0 \leq \mathcal{V}^{jk} \leq \lambda_{jk} \ U_{jk}$	$j \in J_k$, $k \in K$	
	$\sum_{j\in J_k}\lambda_{jk}=I$	$k \in K$	
	$D\lambda \leq d$		
	$x \in R^{n}, v^{jk} \in R^{n}_{+}, \lambda_{jk} \in \{0, 1\}$	$j \in J_k$, $k \in K$	

Proposition: The projected relaxation of (CH) onto the space of (BM) is always as tight or tighter than that of (BM) (*Grossmann I.E.*, S. Lee, 2003)

Trade-off: Big-M fewer vars/weaker relaxation vs Convex-Hull tighter relaxation/more vars

1. Solve relaxed Big-M MILP x^{R}_{BM}

2. Solve separation problem: find point x^{SEP} closest to x^{R}_{BM} Feasible region corresponds to relaxed Convex Hull.

$Min \ Z = \mathbf{\Phi}(\mathbf{x})$	(SEP)
s.t. $Bx \leq b$	
$A_{jk} u^{jk}$ - $a_{jk} \lambda_{jk} \leq 0$	$j \in J_k$, $k \in K$
$x = \sum_{j \in J_k} v^{jk}$	$k \in K$
$0 \leq v^{jk} \leq \lambda_{jk} \; U_{jk}$	$j \in J_k$, $k \in K$
$\sum_{j\in J_k} \lambda_{jk} = 1$	$k \in K$
$D\lambda \leq d$	
$x \in \mathbb{R}^n, \ v^{jk} \in \mathbb{R}^n_+, \ 0 \le \lambda_{jk} \le 1$	$j \in J_k$, $k \in K$

Note: $\Phi(x)$ can be represented by either the Euclidean norm (? $x - x_R^{BM}$?) (NLP) or the Infinity norm $(max_i | x_i - x_{iR}^{BM} |)$ (LP).

3. Cutting plane is generated and added to relaxed big-M MILP.

4. Solve strengthened relaxed Big-M MILP. Go to 2.

Proposition: There exists a vector $\boldsymbol{\xi}$ such that $\xi^T (z^{SEP} - z^{BM}) \ge 0$ is a valid linear inequality, where ξ is a subgradient of $\Phi(z)$ at z^{SEP} . Note: $z=(x,\lambda)$ (1) Let $\Phi(z) \equiv ||z - z^{BM}||_2 \equiv (z - z^{BM})^T (z - z^{BM})$. Then, **Proposition:** $\xi \equiv \nabla \Phi = (z - z^{BM})$ (2) Let $\Phi(z) = ||z - z^{BM}||_{\infty} = max_i |z_i - z_i^{BM}|$. Then, $\xi \equiv (\mu^+ - \mu)$ Lagrange Multipliers Min u s.t $u \ge z_i - z_i^{BM}$ $i \in I$ \checkmark $u \geq -z_i + z_i^{BM}$ $i \in I \quad \longleftarrow \quad \mu$ Feasible region of (SEP) (3) Let $\Phi(z) = ||z - z^{BM}||_{I} = \sum |z_{i} - z_{i}^{BM}|$. Then, $\xi \equiv (\mu^+ - \mu)$ Lagrange Multipliers Min Σu_{i} s.t $u_i \ge z_i - z_i^{BM}$ $i \in I$ \checkmark $u_i \geq -z_i + z_i^{BM} \quad i \in I \quad \longleftarrow \quad \mu$ *Feasible region of (SEP)*

Problem statement: *Hifi M. (1998)*

• We need to fit a set of small rectangles with width w_i and length l_i onto a large rectangular strip of fixed width W and unknown length L. The objective is to fit all small rectangles onto the strip without overlap and rotation while minimizing length L of the strip.

Set of small rectangles

$$\begin{split} & \underset{s.t.}{Min \ Z = L}{} \qquad (SP-GDP) \\ & \underset{s.t.}{S.t.} \quad L \ge x_i + l_i \qquad i \in N \qquad \\ & \begin{bmatrix} Y_{ij}^{1} \\ x_i + l_i \le x_j \end{bmatrix} \lor \begin{bmatrix} Y_{ij}^{2} \\ x_j + l_j \le x_i \end{bmatrix} \lor \begin{bmatrix} Y_{ij}^{3} \\ y_i - h_i \ge y_j \end{bmatrix} \lor \begin{bmatrix} Y_{ij}^{4} \\ y_j - h_j \ge y_i \end{bmatrix} \\ & 0 \le x_i \le U_i - l_i \qquad i \in N \qquad i, j \in N, \ i < j \end{cases} \\ & h_i \le y_i \le W \qquad i \in N \\ & x_i, \ y_i \in R \qquad i \in N \\ & Y_{ij}^{1}, \ Y_{ij}^{2}, \ Y_{ij}^{3}, \ Y_{ij}^{4} \in \{True, False\} \qquad i, j \in N, \ i < j \end{split}$$

Problem Size

	Total number of constraints	Total number of variables	Number of discrete variables
Convex Hull	5272	4244	840
Big-M	1072	884	840

(CPLEX v. 8.1, default MIP options turned on)

		Relaxation	Optimal Solution	Gap (%)	Total Nodes in MIP	Solution Time for Cut Generation (sec)	*Total Solution Time (sec)
	Convex Hull	9.1786			968 652	0	>10 800
	Big-M	9	24	62.5	1 416 137	0	4 093.39
Big- Big- Big- <mark>Big-</mark>	M + 20 cuts M + 40 cuts M + 60 cuts M + 62 cuts	9.1786 9.1786 9.1786 9.1786 9.1786	24 24 24 24	61.75 61.75 61.75 61.75	306 029 547 828 28 611 32 185	3.74 7.48 11.22 11.59	917.79 1 063.51 79.44 <mark>91.4</mark>

* Total solution time includes times for relaxed MIP(s) + LP(s) from separation problem + MIP

Results also for retrofit, scheduling problems

Global Optimization of MINLP

- Global optimization techniques find the global optimum by sequentially approximating the non-convex problem with a convex relaxation

- **Tighter formulations** lead to more efficient algorithms

Finding strong relaxations is a key element in 1. Global Optimization 2. Efficient solution of convex MINLP problems

Relaxation

Under/over estimating functions Convex envelopes Strengthen relaxation Apply basic steps

Remarks

- 1. Since transformation to DNF impractical *special rules* are applied to identify *promising basic steps*
- 2. Stronger relaxation can also be used to infer *tighter bounds for variables*

Illustrative Example: Optimal reactor selection I

Illustrative Example: Optimal reactor selection I Lee & Grossmann (2003) Relaxation

Illustrative Example: Optimal reactor selection I Proposed Relaxation

Dimensions of Test Problems Bilinear/Concave

	Bilinear Terms	Concave Functions	Discrete Variables	Continuous Variables
Example 1	1	0	2	3
Example 2	0	2	2	5
Example 3	4	9	9	8
Example 4	36	0	9	114
Example 5	24	0	9	76

Examples

- 1- Optimal Reactor selection I
- 2- Optimal Reactor selection II
- 3- HEN with investment cost multiple size Regions (Turkay & Grossmann, 1996)
- 4- Water Treatment Network Design problem (Galan & Grossmann, 1998)
- 5- Pooling Network Design problem (Lee & Grossmann, 2003)

Strong linear relaxations exist for bilinear and concave functions

Dimension of Case Studies Linear Fractional, Posynomial, Exponential

	Cont. Vars.	Boolean Vars.	Logic Const.	Disj. Const.	Global Const.
PROC1	5	2	1	1	3
PROC2	5	2	1	1	3
RXN1	4	2	1	1	6
RXN2	4	2	1	1	6
HEN1	18	2	2	2	21

Reference

PROC1, PROC2 :	Optimal Process Network Problem
RXN1, RXN2 :	Optimal Reactor Network Problem
<i>HEN1</i> :	Optimal Heat Exchanger Network Problem

Strong nonlinear relaxations exist for linear fractional and posynomial functions

Heat Exchanger Network Problem

Heat Exchanger Network

Linear Fractional Terms in constraints

Generalized Disjunctive Program

min
$$Z = c_1 A_1 + c_1 A_1 + c_1 A_1 + c_1 A_1 + C_3 + C_4$$

$$\begin{split} Q_1 &= FCP_{H1}(T_1 - T_{H1,out}), Q_2 &= FCP_{H2}(T_2 - T_{H2,out}) \\ Q_3 &= FCP_{C2}(T_3 - T_{C2,in}), Q_3 &= FCP_{H1}(T_{H1,in} - T_1) \\ Q_4 &= FCP_{C3}(T_4 - T_{C3,in}), Q_4 &= FCP_{H2}(T_{H2,in} - T_2) \end{split}$$

$$\begin{split} T_1 \geq T_{C1,in} + EMAT, \ T_2 \geq T_{C1,in} + EMAT \\ Q_1 + Q_2 = Q_{total} \end{split}$$

$$\Delta T_{1} = \frac{(T_{1} - T_{C1,out}) + (T_{H1,out} - T_{C1,in})}{2}, \Delta T_{2} = \frac{(T_{2} - T_{C1,out}) + (T_{H2,out} - T_{C1,in})}{2}$$
$$\Delta T_{3} = \frac{(T_{1} - T_{C2,in}) + (T_{H1,in} - T_{3})}{2}, \Delta T_{4} = \frac{(T_{2} - T_{C3,in}) + (T_{H2,in} - T_{4})}{2}$$

$$\begin{split} T_{H1,out} &\leq T_1 \leq T_{H1,in} \,, T_{H2,out} \leq T_4 \leq T_{H2,in} \\ T_{C2,in} &\leq T_3 \,\,, \, T_{C3,in} \leq T_4 \end{split}$$

 $Q_i \ge 0, \Delta T_i \ge EMAT I = 1,...,4$

Prediction of Lower Bounds Global Optimum

		Global Optimum	Lower Bound Hull Relaxation	Lower Bound Basic Steps	DNF Lower Bound
	React 1	-1.01	-1.28	-1.10	-1.10
Bilinear Concave	React 2	6.31	5.65	6.08	6.08
	HEN	114384.78	91671.18	94925.77	97858.86
	Water	1214.87	400.66	431.90	431.90
	Pool	-4640	-5515	-5468	-5241
	Process 1	18.61	11.85	16.01	16.01
Linear Fractional	Process 2	19.48	12.38	17.07	17.07
Fractional, Posynomial, Exponential	RXN 1	42.89	-337.5	-320.0	-320.0
	RXN 2	76.47	22.5	40.0	40.0
	HEN 1	48531	38729.3	48230	48531

Lower bounds improved in all cases Ave. increase 22%

8 out of 10 achieved theoretically best lower bound (DNF)! Carnegie Mellon

Global Optimization Methodology

Carnegie Mellon

Computational Performance- *Bilinear/Concave*

		Global Optimization Technique using Hull Relaxation		
	Global Optimum	Nodes	Bound contract. (% Avg)	CPU Time (sec)
Example 1	-1.01	5	35	2.1
Example 2	6.31	1	33	1.0
Example 3	114384.78	13	85	11.0
Example 4	1214.87	450	8	217
Example 5	-4640	502	1	268

Remarks

-Proposed relaxation led to a significant bound contraction at the root node.

- 44% reduction number of nodes, 23% reduction CPU time tighter relaxation but increased size of proposed relaxation

	Size of the LP Relaxation (Hull Relaxation)		Size of the LP Relaxation (Proposed)		
	Constraints	Variables	Constraints	Variables	
Example 1	23	15	28	15	
Example 2	24	14	31	18	
Example 3	87	52	206	106	
Example 4	544	346	3424	1210	
Example 5	3336	1777	4237	1777	

Software Implementation GDP Extended Mathematical Programming (GAMS-EMP) syntax (big-M or HR)

Cā

Reformulation algorithm from GDP to MI(N)LP

Algorithm consists of 3 stages

Algorithm

(Trespalacios, Grossmann, 2013)

Carnegie Mellon

Reduction of terms through a preprocessing

Preprocessing allows us to reduce problem size and identify better bounds

lower bound!

With hybrid GDP reformulation it is possible to exploit advantages of Hull-R and Big-M

Illustration 3 stages of Algorithm

GDP example shows the application of these, and improvement in relaxation

[Rule]. In this example: H-Ref improves after 2 BS, then continue iterating, else stop. Other rules, such as limiting the # of terms could be used

Example (Ex5)

min lt

s.t.

 $lt \ge x_4 + 3$

$lt \ge x_1 + 6$		$lt \ge x_1 + 6$		$lt \ge x_1 + 6$		$lt \ge x_1 + 6$	
$lt \ge x_2 + 5$		$lt \ge x_2 + 5$		$lt \ge x_2 + 5$	v	$lt \ge x_2 + 5$	
$lt \ge x_3 + 4$		$lt \ge x_3 + 4$		$lt \ge x_3 + 4$		$lt \ge x_3 + 4$	
$x_1 + 6 \le x_2$	<u>×</u>	$x_1 + 6 \le x_2$	<u>×</u>	$x_2 + 5 \leq x_1$	*	$x_2 + 5 \leq x_1$	
$x_1 + 6 \le x_3$		$x_1 + 6 \le x_3$		$x_3 + 4 \leq x_1$		$x_3 + 4 \leq x_1$	
$x_2+5 \leq x_3$		$x_3 + 4 \leq x_2$		$x_2 + 5 \le x_3$		$x_3 + 4 \leq x_2$	
$[x_1 + 6 \le x_4] \lor [x_4 + 3 \le x_1] \lor [y_1 - 6 \ge y_4] \lor [y_4 - 3 \ge y_1]$							
$[x_2 + 5 \le x_4] \underline{\lor} $	<u>(</u>]	$x_4 + 3 \leq x_2] \vee$	$[y_2$	$-7 \ge y_4] \ge [$	y ₄ -	$-3 \ge y_2$]	
$[x_3 + 4 \le x_4] \underline{\lor} $	<u>(</u>]	$(x_4+3 \le x_3] \ge 1$	[y ₃	$-5 \ge y_4] \ge [$	y ₄ -	$-3 \ge y_3$]	

 $\begin{array}{l} 0 \leq lt \leq 18 \\ 0 \leq x_1 \leq 12 \\ 0 \leq x_2 \leq 13 \\ 0 \leq x_3 \leq 14 \\ 0 \leq x_4 \leq 15 \\ 6 \leq y_1 \leq 10 \\ 7 \leq y_2 \leq 10 \\ 5 \leq y_3 \leq 10 \end{array}$

 $3 \le y_4 \le 10$

Same as optimal solution!

Selection of D^K and D^{*} is based on three key concepts

Consequence of Theorem 4.5¹

A Basic Step between two disjunctions that do not share variables in common will not improve the tightness of the formulation

Growth in proper basic step *#* of terms in resulting disjunction = (*#* of terms in D1)*(*#* of terms in D2)

If we are applying several BS over the same disjunction this growth is even more important

Characteristic value of disjunctions (Pre-analysis)

The disjunction with highest characteristic value is expected to provide tightest relaxation when the Basic Step is applied

Algorithm was tested with several convex problems (I/III)

MILP: Strip packing (Stpck)

MILP: Nontransitive dice (Dice)

- Dice 1 beats dice 2 in 21 of 36 possible outcomes
- Dice 2 beats dice 3 in 21 of 36 possible outcomes
- Dice 3 beats dice 21 in 21 of 36 possible outcomes

Algorithm was tested with several convex problems (II/III)

 Δy_{46}

MINLP: Farm Layout (Flay) MINLP: Constrained Layout (Clay) $A_1 = 40 \text{ m}^2$ v' $A_2 = 50 \text{ m}^2$ $\bar{A_3} = 60 \text{ m}^2$ $A_4 = 35 \text{ m}^2$ 1 3 2 4 $\min P = 2 * (H + L)$ y↑ 5 6 L Δx_{25} A_2 A_3 X Η A₄ $\min Q = \sum_{i} \sum_{j} c_{ij} (\Delta x_{ij} + \Delta y_{ij})$ **A**₁ \overrightarrow{x}

Algorithm was tested with several convex problems (III/III)

MINLP: Process flowsheet (Proc)

MINLP: Multiproduct batch (batch)

Results: The algorithm solves GDP generally faster for the 36 instances in which it was tested

Note: MINLP problems solved with SBB/CONOPT. MILP solved with Gurobi (Pre-solve and cuts deactivated in solver for comparison purpose), in a 2.93 GHz Processor, Intel® Core[™] i7. 4GB of RAM.

Results: MINLP after algorithm provides stronger relaxations

Note: MINLP problems solved with SBB/CONOPT. MILP solved with Gurobi (Pre-solve and cuts deactivated in solver for comparison purpose), in a 2.93 GHz Processor, Intel® Core[™] i7. 4GB of RAM.

Results: MINLP size generally smaller than (HR)

Note: MINLP problems solved with SBB/CONOPT. MILP solved with Gurobi (Pre-solve and cuts deactivated in solver for comparison purpose), in a 2.93 GHz Processor, Intel® Core™ i7. 4GB of RAM.

-Proposed an extension of disjunctive programming theory to nonlinear convex sets that yields hierarchy of relaxations (concept basic steps)

- -Tightest of these relaxations allows in theory the solution of the DP as an convex NLP
- Applied the proposed framework to several instance obtaining significant improvements in the performance (*tighter lower bounds*)
- Proposed framework can be applied to nonconvex GDP problems yielding tighter lower bounds on global optimum (*bilinear, concave, linear fractional*) and can be extended to nonlinear convex envelopes

-Work currently underway to automate reformulation of convex GDP problems into MI(N)LP using concept basic steps

Carnegie Mellon