

Challenges in the Application of Mathematical Programming in the Enterprise-wide Optimization of Process Industries

Ignacio E. Grossmann Center for Advanced Process Decision-making Department of Chemical Engineering Carnegie Mellon University Pittsburgh, PA 15213, U.S.A.

> Zheijang University Hangzhou January 17, 2014

Motivation for Enterprise-wide Optimization

Process industry:

Trend to global operations Pressure for reducing costs, inventories and ecological footprint

Major goal: Enterprise-wide Optimization

Recent research area in Process Systems Engineering: *Grossmann (2005); Varma, Reklaitis, Blau, Pekny (2007)*

A major challenge: optimization models and solution methods

EWO involves optimizing the operations of R&D, material supply, manufacturing, distribution of a company to reduce costs, inventories, ecological footprint and to maximize profits, responsiveness.

Key element: Supply Chain

Example: petroleum industry

Wellhead

Trading

Transfer of Crude

Refinery

Processing

Schedule

Products

Transfer of

Products

Terminal

Loading

Pump

Carnegie Mellon

Key issues:

I. Integration of planning, scheduling and control

II. Integration of <u>information and models/solution</u> methods

min Z = f(x, y) Objective function s.t. h(x, y) = 0 $g(x, y) \le 0$ Constraints $x \in R^n, y \in \{0,1\}^m$

MINLP: Mixed-integer Nonlinear Programming Problem

Linear/Nonlinear Programming (LP/NLP)

 $\min Z = f(x)$ s.t. h(x) = 0 $g(x) \le 0$

 $x \in \mathbb{R}^n$

LP Codes:

CPLEX, XPRESS, GUROBI, XA

Very large-scale models Interior-point: solvable polynomial time

NLP Codes:

CONOPT Drud (1998) IPOPT Waechter & Biegler (2006) Knitro Byrd, Nocedal, Waltz (2006) MINOS Murtagh, Saunders (1995) SNOPT Gill, Murray, Saunders(2006) BARON Sahinidis et al. (1998) Couenne Belotti, Margot (2008) Global Optimization Large-scale models RTO: Marlin, Hrymak (1996) Zavala, Biegler (2009)

Issues: Convergence Nonconvexities

Mixed-integer Linear/Nonlinear Programming (MILP/MINLP)

 $\min Z = f(x, y)$ s.t. h(x, y) = 0 $g(x, y) \leq 0$ $x \in \mathbb{R}^{n}, y \in \{0,1\}^{m}$ Great Progress over last decade despite NP-hard **MILP Codes: Planning/Scheduling:** Lin, Floudas (2004) Mendez, Cerdá, Grossmann, Harjunkoski (2006) CPLEX, XPRESS, GUROBI, XA Pochet, Wolsey (2006) **MINLP Codes: DICOPT (GAMS)** Duran and Grossmann (1986) New codes over last decade a-ECP Westerlund and Petersson (1996) Leveraging progress in MILP/NLP **MINOPT** Schweiger and Floudas (1998) **MINLP-BB** (AMPL)*Fletcher and Leyffer* (1999) Issues: **SBB (GAMS)** Bussieck (2000) Convergence Bonmin (COIN-OR) Bonami et al (2006) Nonconvexities FilMINT Linderoth and Leyffer (2006) *Scalability* **BARON** Sahinidis et al. (1998) Global Couenne Belotti, Margot (2008) Optimization LOMIQO Floudas, Meisner (2011)

Modeling systems

Mathematical Programming

GAMS (Meeraus et al, 1997)

AMPL (Fourer et al., 1995)

AIMSS (Bisschop et al. 2000)

1. Algebraic modeling systems => pure equation models

2. Indexing capability => large-scale problems

3. Automatic differentiation => no derivatives by user

4. Automatic interface with LP/MILP/NLP/MINLP solvers

Have greatly facilitated development and implementation of Math Programming models

Generalized Disjunctive Programming (GDP)

 $\min Z = \sum_{k} c_{k} + f(x)$ $s.t. \quad r(x) \leq 0$ $\bigvee_{j \in J_{k}} \begin{bmatrix} Y_{jk} \\ g_{jk}(x) \leq 0 \\ c_{k} = \gamma_{jk} \end{bmatrix} \quad k \in K$ $\Omega(Y) = true$ $x \in R^{n}, c_{k} \in R^{1}$ $Y_{jk} \in \{ true, false \}$ $\max(Grossmann(1994)$ Disjunctions Logic Propositions Continuous Variables Boolean Variables

Codes: LOGMIP (*GAMS-Vecchietti, Grossmann, 2005*) **EMP** (*GAMS-Ferris, Meeraus, 2010*)

Framework for deriving schedling models Castro, Grossmann (2012)

Optimization Under Uncertainty

Multistage Stochastic Programming

Birge & Louveaux, 1997; Sahinidis, 2004

Special case: two-stage programming (N=2)

 x^1 stage 1 ω x^2 recourse (stage 2)

Planning with endogenous uncertainties (e.g. yields, size resevoir, test drug): Goel, Grossmann (2006), Colvin, Maravelias (2009), Gupta, Grossmann (2011)

Robust Optimization

Major concern: feasibility over uncertainty set

Ben-Tal et al., 2009; Bertsimas and Sim (2003)

LP

$$\min_{x} c^{T}x : a_{i}^{T}x \leq b_{i}, \quad i = 1, \dots, m$$

• Ellipsoidal uncertainty:

$$a_i \in \mathcal{E}_i = \{\hat{a}_i + P_i^{1/2}u : \|u\|_2 \le 1\}$$

Robust scheduling: Lin, Janak, Floudas (2004); Li, Ierapetritou (2008)

Multiobjective Optimization

E-constraint method: Ehrgott (2000) Parametric programming: Pistikopoulos, Georgiadis and Dua (2007)

Decomposition Techniques

Lagrangean decomposition

Geoffrion (1972) Guinard (2003)

Complicating Constraints

complicating constraints

$$\int Ax = b$$

$$D_i x_i = d_i \ i = 1, ..n$$

$$x \in X = \{x \mid x_i, i = 1, ..n, | x_i \ge 0\}$$
Widely used in EWO

max $c^T r$

Benders decomposition

Benders (1962), Magnanti, Wing (1984)

Complicating Variables

complicating
variables
$$\max a^{T} y + \sum_{i=1,..n} c_{i}^{T} x_{i}$$
$$y + D_{i} x_{i} = d_{i} \quad i = 1,..n$$
$$y \ge 0, \ x_{i} \ge 0, \ i = 1,..n$$

Applied in 2-stage Stochastic Programming

Decomposition Techniques (cont.)

Bi-level decomposition Tailor-made Benders

Iyer, Grossmann (1998)

Special industrial interest group in CAPD: "Enterprise-wide Optimization for Process Industries"

http://egon.cheme.cmu.edu/ewocp/

Multidisciplinary team:

Chemical engineers, Operations Research, Industrial Engineering

Researchers:		
Carnegie Mellon:	Ignacio Grossmann (ChE)	Carnegie Mellon
	Larry Biegler (ChE)	
	Nicola Secomandi (OR)	
	John Hooker (OR)	
Lehigh University:	Katya Scheinberg (Ind. Eng)	
	Larry Snyder (Ind. Eng.)	
	Jeff Linderoth (Ind. Eng.)	

Projects and case studies with partner companies: "Enterprise-wide Optimization for Process Industries"

ABB: Optimal Design of Supply Chain for Electric Motors	
Contact: Iiro Harjunkoski	Ignacio Grossmann, Analia Rodriguez, Yonheng Jiang
Air Liquide: Optimal Coordination of Production and Distribution of I	ndustrial Gases
Contact: Jean Andre, Jeffrey Arbogast	Ignacio Grossmann, Pablo Marchetti
Braskem: Optimal production and scheduling of polymer production	
Contact: Rita Majewski, Wiley Bucey	Ignacio Grossmann, Pablo Marchetti
Dow: Optimal Design of Supply Chains under Disruptions	
Contact: John Wassick	Ignacio Grossmann, Pablo Garcia-Guerrero
Dow: Optimal Operation of Reliable Integrated Sites	
Contact: John Wassick, Anshul Agrawal	Ignacio Grossmann, Bruno Calfa
Dow: Financial Risk with Discrete Event Simulation	
Contact: Bikram Shards, Scott Bury	Nikolaos Sahinidis, Sayit Amaran
Dow: Batch Scheduling and Dynamic Optimization	
Contact: Carlos Villa	Larry Biegler, Yisu Nie
Ecopetrol: Adaptive Process Control	
Contact: Sandra Milena Montagut	Erik Ydstie, Masoud Golshan
ExxonMobil: Global optimization of multiperiod blending networks	
Contact: Myun-Seok Cheon, Kevin Furman, Nick Sawaya	Ignacio Grossmann, Scott Kolodziej, Francisco Trespalacios
ExxonMobil: Design and planning of oil and gasfields with fiscal const	traints
Contact: Bora Tarhan	Ignacio Grossmann, Vijay Gupta
Mitsubishi: Optimization of power flows	
Contact: Arvind Raghunathan	Larry Biegler, Ajit Gopalakrishnan
Petrobras: Nonlinear Integrated Model for Operational Planning of M	Iulti-Site Refineries
Contact: Lincoln Moro	Ignacio Grossmann, Breno Menezes
P&G: Models for predicting shelf-life of consumer products	
Contact: Ben Weinstein	Larry Biegler, George Ostace
Praxair: Capacity Planning of Power Intensive Networks with Changi	ng Electricity Prices
Contact: Jose Pinto	Ignacio Grossmann, Sumit Mitra
UNILEVEK: Planning and Scheduling of Fast Moving Goods	
Contact: Hans Hogland	Ignacio Grossmann, Martijn van Elzakker

-Linear vs Nonlinear models

- The multi-scale optimization challenge
- The uncertainty challenge
- Economics vs performance
- Computational efficiency in large-scale problems
- Commercial vs. Tailored Software

Most EWO problems formulated as MILP

Example: MILP Supply Chain Design Problem 2,001 0-1 vars, 37,312 cont vars, 80,699 constraints

CPLEX 12.2: MIP Solution: 5,043,251 (160 nodes, 13734 iterations,) Relative gap: 0.004263 (< 0.5%) CPU-time: 27 secs!!!

NLP required for process models **MINLP** required for cyclic scheduling, stochastic inventory, MIDO for integration of control

Nonlinear CDU Models in Refinery Planning Optimization

Alattas, Palou-Rivera, Grossmann (2010)

Refinery Planning Models

LP planning models

Fixed yield model Swing cuts model

Nonlinear FI Model (*Fractionating Index*)

- **FI Model is crude independent**
 - FI values are characteristic of the column
 - **FI** values are readily calculated and updated from refinery data
- Avoids more complex, nonlinear modeling equations
- **Generates cut point temperature settings for the CDU**
- □ Adds few additional equations to the planning model

Planning Model Example Results

Crude1	Louisiana	Sweet	Lightest
Crude2	Texas	Sweet	
Crude3	Louisiana	Sour	-
Crude4	Texas	Sour	Heaviest

- □ Comparison of *nonlinear fractionation index (FI)* with the fixed yield (FY) and swing cut (SC) models
- □ Economics: <u>maximum profit</u>

FI yields highest profit

Model	Case1	Case2	Case3
 FI	245	249	247
SC	195	195	191
FY	51	62	59

Model statistics LP vs NLP

□ FI model larger number of equations and variables

- □ Impact on solution time
- □ ~30% nonlinear variables

	Model	Variables	Equations	Nonlinear Variables	CPU Time	Solver
	FY	128	143		0.141	
	SC	138	163		0.188	CPLEX
UII Case	FI	1202	1225	348	0.328	CONOPT

- Solution large-scale problems:

Strategy 1: Exploit problem structure (TSP) Strategy 2: Decomposition Strategy 3: Heuristic methods to obtain "good feasible solutions"

Design Supply Chain Stochastic Inventory

You, Grossmann (2008)

- Major Decisions (Network + Inventory)
 - Network: number of DCs and their locations, assignments between retailers and DCs (single sourcing), shipping amounts
 - Inventory: number of replenishment, reorder point, order quantity, safety stock
- Objective: (Minimize Cost)
 - Total cost = DC installation cost + transportation cost + fixed order cost
 + working inventory cost + safety stock cost

Trade-off: Transportation vs inventory costs

INLP Model Formulation

26

min

Nonconvex INLP: 1. Variables Y_{ij} can be relaxed as continuous

2. Problem reformulated as MINLP

3. Solved by Lagrangean Decomposition (by distribution centers)

Model Properties

- Variables Y_{ij} can be relaxed as continuous variables (MINLP)
 - Local or global optimal solution always have all Y_{ij} at integer
 - If h=0, it reduces to an "uncapacitated facility location" problem
 - NLP relaxation is very effective (usually return integer solutions)

$$\begin{array}{ll} \min & \sum_{j \in J} f_j X_j + \sum_{i \in I} \sum_{j \in J} \hat{d_{ij}} Y_{ij} + \sum_{j \in J} K_j \sqrt{\sum_{i \in I} \mu_i Y_{ij}} + \sum_{j \in J} q \sqrt{\sum_{i \in I} \hat{\sigma_i}^2 Y_{ij}} \\ \text{s.t.} & \sum_{j \in J} Y_{ij} = 1 \quad , \quad \forall i \in I \\ & Y_{ij} \leq X_j \quad , \quad \forall i \in I, j \in J \\ & Y_{ij} \geq 0 \quad , \quad \forall i \in I, j \in J \\ & X_j, \in \{0, 1\} \quad , \quad \forall j \in J \\ \end{array}$$
 Non-convex MINLP
where $\hat{d_{ij}} = \beta \mu_i (d_{ij} + a_j), \ \hat{\sigma_i}^2 = L \sigma_i^2 K_j = \sqrt{2\theta h(F_j + \beta g_j)}, \ q = \theta h z_{\alpha}$

Algorithm 1 – MINLP Heuristic

- MINLP Heuristic Method
 - Solve the convex relaxation (MILP), using secant for convex envelope
 - Use optimal value of *X* and *Y* variables as initial point, solve the reformulated problem with an MINLP solver (BARON, Dicopt, etc.)

$$\min \sum_{j \in J} \left\{ f_j X_j + \left(\sum_{i \in I} \hat{d_{ij}} Y_{ij} \right) + K_j Z \mathbf{1}_j + q \ Z \mathbf{2}_j \right\}$$
s.t.
$$\sum_{j \in J} Y_{ij} = 1 \quad , \quad \forall i \in I$$

$$Y_{ij} \leq X_j \quad , \quad \forall i \in I, j \in J$$

$$Y_{ij} \geq 0 \quad , \quad \forall i \in I, j \in J$$

$$X_j, \in \{0, 1\} \quad , \quad \forall j \in J$$

$$Z \mathbf{1}_j^2 + \sum_{i \in I} \hat{\sigma}_i^2 Y_{ij} \leq 0 \quad , \quad \forall j \in J$$

$$Z \mathbf{1}_j \geq 0, \ Z \mathbf{2}_j \geq 0 \quad , \quad \forall j \in J$$

$$Z \mathbf{1}_j \geq 0, \ Z \mathbf{2}_j \geq 0 \quad , \quad \forall j \in J$$

$$T = \sum_{i \in I} \hat{\sigma}_i^2 Y_{ij} \leq 0 \quad , \quad \forall j \in J$$

$$T = \sum_{i \in I} \hat{\sigma}_i^2 Y_{ij} \leq 0 \quad , \quad \forall j \in J$$

$$T = \sum_{i \in I} \hat{\sigma}_i^2 Y_{ij} \leq 0 \quad , \quad \forall j \in J$$

Algorithm 2 - Lagrangean Relaxation

 $\sum_{j \in J} X_j \ge 1$

- Lagrangean Relaxation (LR) and Decomposition
 - LR: dualizing the single sourcing constraint: ٠
 - Spatial Decomposition: decompose the problem for each potential DC j
 - Implicit constraint: at least one DC should be installed,
 - Use a special case of LR subproblem that $X_i = 1$

$$\min \sum_{j \in j} \left\{ f_j X_j + \sum_{i \in I} (\hat{d}_{ij} - \lambda_i) Y_{ij} + K_j Z 1_j + q Z 2_j \right\} + \sum_{i \in I} \lambda_i$$
s.t. $Y_{ij} \leq X_j$, $\forall j \in J$, $i \in I$
 $\forall j \in J$, $i \in I$
 $\forall j \in J$, $i \in I$
 $\forall j \in J$
 $-Z 1_j^2 + \sum_{i \in I} \hat{\sigma}_i^2 Y_{ij} \leq 0$, $\forall j \in J$
 $Z 1_j \geq 0, Z 2_j \geq 0$, $\forall j \in J$
 $\forall j \in J$
 $decompose by DC j$

Computational Results

• Each instance has the same number of potential DCs as the retailers

150 retailers: MINLP has 150 bin. var., 22,800 cont. var., 22,800 constraints

No	βθ		Lagrangean Relaxation				
Retailers		θ	Upper Bound	Lower Bound	Gap	Iter.	Time (s)
88	0.001	0.1	867.55	867.54	0.001 %	21	356.1
<mark>88</mark>	0.001	0.5	1230.99	1223.46	0.615 %	24	322.54
<mark>88</mark>	0.005	0.1	2284.06	2280.74	0.146 %	55	840.28
88	0.005	0.5	2918.3	2903.38	0.514 %	51	934.85
150	0.001	0.5	1847.93	1847.25	0.037 %	13	659.1
150	0.005	0.1	3689.71	3648.4	1.132 %	53	3061.2

• Suboptimal solution in 3 out of 6 cases with BARON for 10 hour limit. Large optimality gaps

The multi-scale optimization challenge

Temporal integration long-term, medium-term and

short-term Bassett, Pekny, Reklaitis (1993), Gupta, Maranas (1999), Jackson, Grossmann (2003), Stefansson, Shah, Jenssen (2006), Erdirik-Dogan, Grossmann (2006), Maravelias, Sung (2009), Li and Ierapetritou (2009), Verderame, Floudas (2010), Salema, Barbosa-Povoa, Novais (2010)

Spatial integration geographically distributed sites

Gupta, Maranas (2000), Tsiakis, Shah, Pantelides (2001), Jackson, Grossmann (2003), Terrazas, Trotter, Grossmann (2011)

Decomposition is key: Benders, Lagrangean, bilevel

Multi-site planning and scheduling involves different

temporal and spatial scales Terrazas, Grossmann (2011)

Objective: Maximize Profit

subject to

- Market constraints
 - Balance of sales vs. shipments to markets
- Production constraints
 - Capacity constraints: Limited capacity at each production sites
 - Inventory constraints: Penalties for inventory over or under target
 - Links across periods: a) Carry over inventories from last month
 b) Changeover to first product in next month
 - Time Balances: Task should not take longer than available time
 - Sequencing Constraints: Traveling Salesman Problem Constraints

Î

Source of complexity of the model: TSP constraints

Bilevel decomposition + Lagrangean decomposition

- → Shipments (**sht**) leaving production sites
- Shipments $(\hat{\mathbf{sht}})$ arriving at markets

- Bilevel decomposition
 - Decouples planning from scheduling
 - Integrates across temporal scale

• Lagrangean decomposition

- Decouples the solution of each production site
- Integrates across spatial scale

Example: 3 sites, 3 products, 3 months

Large-scale problems

Integration of operational and strategic decisions for air separation plants

Carnegie Mellon

Given:

- Power-intensive plant
- Products $g \in G$ (Storable and Nonstorable)
- Product demands d_g^{t} for season t
- Seasonal electricity prices on an hourly basis e^{t,h}, t ∈T, h ∈ H
- Upgrade options $u \in U$ of existing equipment
- New equipment options $n \in N$
- Additional storage tanks $st \in ST$

Determine:

- Production levels $\Pr_{m,o}^{t,h}$ - Mode of operation $\tilde{y}_{m,o}^{t,h}$, $y_{m}^{t,h}$ for each - Sales $S_{g}^{t,h}$ season on an - Inventory levels $INV_{g}^{t,h}$ hourly basis
 - Upgrades for equipment
- Purchase of new equipm.
- Purchase of new tanks

With minimum investment and operating costs

Demand Side Management is part of a complex multi-scale design and operations problem for power-intensive processes.

The operational model is based on a surrogate representation in the product space

Carnegie Mellon

- [2] Karwan, K.; Keblis M. Operations planning with real time pricing of a primary input. Computers & Operations Research, 34:848–867, 2007.
- [3] Reformulation of disjunction with convex hull according to

Balas, E. Disjunctive Programming and a Hierarchy of Relaxations for Discrete Optimization Problems. SIAM J. Alg. Disc. Meth, 6:466-486, 1985

^[1] Ierapetritou, M.G.; Wu, D.; Vin, J.; Sweeny P.; Chigirinskiy M. Cost Minimization in an Energy-Intensive Plant Using Mathematical Programming Approaches. Industrial & Engineering Chemistry Research, 41:5262–5277, 2002.

[*] Derivation of logic constraint using propositional logic according to

Raman, R.; Grossmann, I.E. Modeling and Computational Techniques for Logic Based Integer Programming. Comp. Chem. Eng., 18:563, 1993.

- Horizon: 5-15 years, each year has 4 periods (spring, summer, fall, winter)
- Each period is represented by **one week on an hourly basis**
- Varying inputs: electricity prices, demand data (here: highly utilized plant), configuration slates
- Each representative week is repeated in a **cyclic** manner (**13** weeks reduced to **1** week)

(8736 hr vs. 672 hr)

- Connection between periods: Only through investment (design) decisions
- Design decisions are modeled by **discrete equipment sizes**

- The resulting MILP has **191,861 constraints** and **161,293 variables** (**18,826 binary**.)
- Solution time: 38.5 minutes (GAMS 23.6.2, GUROBI 4.0.0, Intel i7 (2.93GHz) with 4GB RAM

Investments increase flexibility help realizing savings. Carnegie Mellon

Remarks on case study

- Annualized costs: \$5,700k/yr
- Annualized savings: \$400k/yr
- Buy new liquefier in the first time period (annualized investment costs: \$300k/a)
- Buy additional LN2 storage tank (\$25k/a)
 - Don't upgrade existing equipment (\$200k/a)
- Take-away message on operational level: *Reduce production when prices are high and build up LN2 when prices are low.*
 - Utilization of existing equipment: 97%.

Source: CAPD analysis; Mitra, S., I.E. Grossmann, J.M. Pinto and Nikhil Arora, "Integration of strategic and operational decision- making for continuous power-intensive processes", submitted to ESCAPE, London, Juni 2012

- The uncertainty challenge:

Short term uncertainties: robust optimization Computation time comparable to deterministic models

Long term uncertainties: stochastic programming Computation time one to two orders of magnitude larger than deterministic models

Global Sourcing Project with

Uncertainties

You, Wassick, Grossmann (2009)

- Given
 - Initial inventory
 - Inventory holding cost and throughput cost
 - Transport times of all the transport links
 - Uncertain production reliability and demands
- Determine
 - Inventory levels, transportation and sale amounts
 - Objective: Minimize Cost

Two-stage stochastic MILP model 1000 scenarios (Monte Carlo sampling)

- ~ 100 facilities
- ~ 1,000 customers
- ~ 25,000 shipping links/modes

MILP Problem Size

Case Study 1	Deterministic Model				
# of Constraints	62,187				
# of Cont. Var.	89,014				
# of Disc. Var.	7				

- Impossible to solve directly
- takes 5 days by using standard L-shaped Benders
- only **20 hours** with **multi-cut version Benders**

•30 min if using 50 parallel CPUs and multi-cut version

Stochastic Planner vs Deterministic Planner

Carnegie Mellon

Optimal Development Planning under Uncertainty ExonMobil

>Offshore oilfield having several reservoirs under uncertainty

FPSO

Tarhan, Grossmann (2010)

Maximize the expected net present value (ENPV) of the project

Decisions:

nemical FINEERING

- Number and capacity of TLP/FPSO facilities
- Installation schedule for facilities
- Number of sub-sea/TLP wells to drill \geq
- Oil production profile over time

TLP

Uncertainty:

- >Initial productivity per well
- **Size of reservoirs**
- >Water breakthrough time for reservoirs

Uncertainty is represented by discrete distributions functions

Decision Dependent Scenario Trees

(Endogeneous uncertainties)

Assumption: Uncertainty in a field resolved as soon as WP installed at field

Scenario tree Not unique: Depends on timing of investment at uncertain fields Central to defining a Stochastic Programming Model

Stochastic Programming

Alternative and equivalent scenario tree structure (Ruszczynski, 1997):

Stochastic Programming

Each scenario is represented by a set of unique nodes

Stochastic Programming

Nodes have same amount of information <u>Nodes are indistinguishable</u>

Non-anticipativity constraints

Representation of Decision-Dependence Using Scenario Tree

t=2

t=1

t=4

t=3

Multi-stage Stochastic Nonconvex MINLP

Maximize.. Probability weighted average of NPV over uncertainty scenarios

subject to

- > Equations about economics of the model
- > Surface constraints
- Non-linear equations related to reservoir performance
- Logic constraints relating decisions if there is a TLP available, a TLP well can be drilled

><u>Non-anticipativity constraints</u>

Non-anticipativity prevents a decision being taken now from using information that will only become available in the future **Disjunctions (conditional constraints)** Every scenario, time period

Every pair scenarios, time period

Problem size MINLP increases exponentially with number of time periods and scenarios

Decomposition algorithm: Lagrangean relaxation & Branch and Bound

Formulation of Lagrangean dual

Relaxation

- Relax disjunctions, logic constraints
- Penalty for equality constraints ${}^{b}\lambda_{uf}^{s,s'}, {}^{y}\lambda^{s,s'}, {}^{d}\lambda^{s,s'}$:

Lagrange Multipliers

Non-anticipativity constraints

$$\begin{split} & \text{Max } \sum_{s} p^{s} \left[\sum_{t} \left(c_{1t}q_{t}^{s} + c_{2t}d_{t}^{s} + c_{3t}y_{t}^{s} + \sum_{uf} c_{4t,uf}b_{uf,t}^{s} \right) \right] \\ & + \sum_{(s,s')} \left[\sum_{uf} {}^{b} \lambda_{uf}^{s,s'} \left(b_{uf,1}^{s} - b_{uf,1}^{s'} \right) + {}^{y} \lambda^{s,s'} \left(y_{1}^{s} - y_{1}^{s'} \right) + {}^{d} \lambda^{s,s'} \left(d_{1}^{s} - d_{1}^{s'} \right) \right] \\ & \sum_{\tau=1}^{t} \left(A_{\tau}^{s} q_{\tau}^{s} + B_{\tau}^{s} d_{\tau}^{s} + C_{\tau}^{s} y_{\tau}^{s} + \sum_{uf} D_{uf,\tau}^{s} b_{uf,\tau}^{s} \right) \leq a_{t}^{s} \\ & \left[\begin{array}{c} Z_{t}^{s,s'} \\ q_{t}^{s} &= q_{t}^{s'} \\ d_{t+1}^{s} &= d_{t+1}^{s'} \\ y_{t+1}^{s} &= y_{t+1}^{s'} \\ b_{uf,t+1}^{s} &= b_{uf,t+1}^{s'} \forall uf \end{array} \right] \\ & \forall \left[\neg Z_{t}^{s,s'} \right] \\ & Z_{t}^{s,s'} \Leftrightarrow \bigwedge_{uf \in \mathcal{D}(s,s')} \left[\bigwedge_{\tau=1}^{t} \left(\neg b_{uf,\tau}^{s} \right) \right] \\ & \forall (t,s,s') \\ & b_{uf,1}^{s} &= b_{uf,1}^{s'} \\ & d_{1}^{s} &= d_{1}^{s'} \\ & y_{1}^{s} &= y_{1}^{s'} \\ \end{array} \right] \\ & \forall (s,s') \end{split}$$

One Reservoir Example

Optimize the planning decisions for an oilfield having single reservoir for 10 years.

Decisions:

Number, capacity and installation schedule of FPSO/TLP facilities

Number and drilling schedule of sub-sea/TLP wells

Oil production profile over time

Uncertain Parameters	Scenarios							
(Discrete Values)	1	2	3	4	5	6	7	8
Initial Productivity <u>per</u> well (kbd)	10	10	20	20	10	10	20	20
Reservoir Size (Mbbl)		300	300	300	1500	1500	1500	1500
Water Breakthrough Time Parameter	5	2	5	2	5	2	5	2

Construction		Vells	Facilities				
Lead Time	Lead Time TLP Sub-sea		TLP	Small FPSO	Large FPSO		
(years)	1	1	1	2	4		

Solution proposes building 2 small FPSO's in the first year and then add new facilities / drill wells (recourse action) depending on the positive or negative outcomes.

Solution proposes building 2 small FPSO's in the first year and then add new facilities / drill wells (recourse action) depending on the positive or negative outcomes.

Distribution of Net Present Value

Deterministic Mean Value = 4.38×10^{9} Multistage Stoch Progr = 4.92×10^{9} => <u>12% higher and more robust</u>

Computation: Algorithm 1: 120 hrs; Algorithm 2: 5.2 hrs Nonconvex MINLP: 1400 discrete vars, 970 cont vars, 8090 Constraints

Economics vs. performance?

Multiobjective Optimization Approach

Economics vs Environmental: Guillen-Gozalbez, Grossmann (2010) Pinto-Varela, Barbosa-Póvoa and A.Q. Novais (2011)

Optimal Design of Responsive Process Supply Chains

Objective: design supply chain polystyrene resisns under responsive and economic criteria

You, Grossmann (2008)

Carnegie Mellon

enical MEERING

Production Network of Polystyrene Resins

Three types of plants:

Plant *I*: *Ethylene* + *Benzene* ----> *Styrene* (1 products)

Plant *II*: *Styrene* \longrightarrow *Solid Polystyrene* (*SPS*) (3 products)

Plant *III*: *Styrene* \longrightarrow *Expandable Polystyrene* (*EPS*) (2 products)

Basic Production Network

Source: Data Courtesy Nova Chemical Inc. http://www.novachem.com/

Potential Network Superstructure

Carnegie Mellon

Responsiveness - Lead Time

Lead Time for A Linear Supply Chain

- A supply chain network = \sum Linear supply chains
 - Assume information transfer instantaneously

Lead Time under Demand Uncertainty

Bi-criterion Multiperiod MINLP Formulation

Bi-criterion

Choose Discrete (0-1), continuous variables

- Objective Function:
 - Max: Net Present Value
 - Min: Expected Lead time
- Constraints:
 - Network structure constraints

Suppliers – plant sites Relationship Plant sites – Distribution Center Input and output relationship of a plant Distribution Center – Customers Cost constraint Operation planning constraints Production constraint

Carnegie Mellon

Capacity constraint Mass balance constraint Demand constraint Upper bound constraint

Assignment constraint Sequence constraint Demand constraint Production constraint Cost constraint

Probabilistic constraints Chance constraint for stock out (reformulations)

Case Study

- Problem Size:
 - # of Discrete Variables: 215
 - # of Continuous Variables: 8126
 - # of Constraints: 14617

- Solution Time:
 - Solver: GAMS/BARON
 - Direct Solution: > 2 weeks
 - Proposed Algorithm: ~ 4 hours

Example

Pareto Curves – with and without safety stock

Example

Safety Stock Levels - Expected Lead Time

1. Integration of control with planning and scheduling

Bhatia, Biegler (1996), Perea, Ydstie, Grossmann (2003), Flores, Grossmann (2006), Prata, Oldenburg, Kroll, Marquardt (2008), Harjunkoski, Nystrom, Horch (2009)

Challenge: Effective solution of Mixed-Integer Dynamic Optimization (MIDO)

2. Optimization of entire supply chains

Challenges:

- Combining different models (eg maritime and vehicle transportation, pipelines) Cafaro, Cerda (2004), Relvas, Matos, Barbosa-Póvoa, Fialho, Pinheiro (2006)
- Advanced financial models

Van den Heever, Grossmann (2000), Guillén, Badell, Espuña, Puigjaner (2006),

3. Design and Operation of Sustainable Supply Chains

Challenges:

Biofuels, Energy, Environmental

Elia, Baliban, Floudas (2011) Guillén-Gosálbez (2011), You, Tao, Graziano, Snyder (2011)

Conclusions

- **1. Enterprise-wide Optimization area of great industrial interest** *Great economic impact for effectively managing complex supply chains*
- 2. Key components: Planning and Scheduling Modeling challenge: *Multi-scale modeling* (temporal and spatial integration)
- 3. Computational challenges lie in:
 - a) Large-scale optimization models (decomposition, advanced computing)
 b) Handling uncertainty (stochastic programming)