时间:2019-05-05 来源:研究生思政办 编辑:yjsszcse 访问次数:4954
本人李啸晨,有幸参加2018年“浙江大学资助博士研究生开展国际合作研究与交流”项目,赴加拿大女王大学参加为期6个月的学术访问。
女王大学又名皇后大学,是安大略省第二古老的大学,1841年根据维多利亚女王的皇家宪章建立,原为教会赞助学校,1912年变为非教会学校。在学术方面,女王大学一直保持着很高的水准,共开设包括商科、医学、法学、生物、工程、文科及理科等15个不同的院系,并设立Bader英国学习中心,华盛顿学习中心等。女王大学位于加拿大安大略省的金斯顿市,在加拿大最大的两座城市蒙特利尔和多伦多之间。金斯顿就坐落在安大略湖畔,也是圣劳伦斯河,千岛湖和丽都运河的入口。金斯顿在1841年6月15日被定为加拿大第一任首都。女王大学校训是:Sapientia et Doctrina Stabilitas(知识与智慧使你处乱不惊)。
我此次学术访问的是化学工程系,李翔教授带领的过程优化研究团队。李翔教授是优化控制领域内的知名学者,在计划与调度、模型预测控制和全局优化等领域研究经验丰富。在控制系统、优化及应用等领域发表了多篇SCI论文,现任加拿大化学工程协会系统与控制部门副主席。实验室学生来自世界各地,包括美国,挪威还有中国等。在这里,可以通过这些同学体验到世界各地的民族风情和地域文化。李翔教授团队主要研究方向包括最优能源网络设计,生产计划,调度和供应链管理,混合整数规划和非凸优化,存在不确定性的最优化控制。
我此次研究访问的主要研究内容是不确定环境下的最优化操作问题,针对这一问题,分析过程系统的层次模型,提出实时优化与控制集成的级联结构。对于优化层采用基于梯度信息的稳态实时优化方法,通过在线采集过程测量值,估计过程的梯度信息,更新设定值。不需要使用显式的过程模型,可以有效抑制模型失配对优化目标的影响。利用最小二乘的思想求解梯度向量,降低计算成本,可应用于大规模工业过程的稳态实时优化。基于自优化控制思想,提出非线性过程中被控变量的选取方法,利用非线性模型计算平均损失,优化效果具有全局性。为了快速求解非线性规划问题,对某些条件进行合理假设,从而获得次优解,给出求解被控变量的解析方法,提高计算效率。提出一种测量变量子集的选择方法,将测量变量子集选取,转化为一个混合整数二次规划问题,减轻了计算负担和传感器测量成本。
在交换期间,根据指导老师李翔教授的推荐,我还旁听了女王大学化工学院开设的两门与优化理论相关的课程,课程名称分别为CHEE 827 SYSTEM OPTIMIZATION 和 CHEE 927 GLOBAL OPTIMIZATION。其中CHEE 827主要涉及到系统优化的数学规划方法,主要包括:线性规划理论,混合整数线性规划理论,非线性规划相关基础,无约束线性规划理论和有约束线性规划理论;CHEE 927 主要涉及到全局优化相关方法,主要包括:凸松弛相关理论,基于分枝定界的全局优化理论,拉格朗日对偶理论和基于分解法的全局优化理论。通过对这两门课程的旁听,对系统优化理论和全局优化方法有了一个全面的认识和了解,同时将相关理论运用到自己的研究课题中。
在访问期间,我每周会与李翔教授讨论研究进展。同时,李翔教授团队非常重视不同研究小组的交流和讨论,大家参与讨论的积极性也很高。这种讨论通常是以小组会议、本科生的项目答辩、硕士学位答辩等形式进行,课题组其他成员也经常通过组会的形式,轮流进行展示汇报。
通过本次的学术交流,让我收获颇丰,首先是自己英文的水平,有了明显的提高,在一个以英语为母语的国家学习与生活,使自己英文的听说读写能力有了很大的提高。通过6个月的交流,让我能够真正了解一个国家的风土人情和生活习惯。同时,与世界一流的教授、世界各地的同学一起讨论、生活,给我在学术见解方面带来极大的收获。生活方面,女王大学不提供集体宿舍,需要自己租房或与其他人合租。饮食方面一日三餐都要在住处自己完成。因此相比国内大学各项生活方面的便捷,海外留学期间料理日常生活、做饭和平衡各项时间方面,对自己都是一项新的挑战。
6个月的时间一晃就过去了,走之前和指导老师,课题组成员以及房东一一道别,在飞机上回想这段时间的经历,是丰富和美妙的,相信会成为我人生中难以忘怀的经历。在这里首先要感谢浙江大学能给我这次参加交换的机会,同时也感谢我的导师以及李翔教授在交流期间给我的帮助。通过本次交流的机会培养了我独立研究的能力,回国后将开展小组讨论,做交流报告等方式推动课题组在该方向上的进一步研究,也能把交流的研究成果写成论文。